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ABSTRACT

This paper discusses how sensitivity analysis can be used to model the human cardiovascular
system. Our goal is to better understand the relevance of each section and subsection of arteries,
veins, and capillaries. We model the pressure, flow, and volume through different parts of the
system over time and examine how changing different parameters (resistance, compliance,
elastance, and timing) changes the model. We also examine the sensitivity of the model with
respect to these parameters, and model the sensitivities. We conducted our research with
reference to common predetermined diagrammatic cardiovascular models. The findings of this
paper are intended to better the understanding of blood flow throughout specific paths in the
body.

INTRODUCTION

Modeling the cardiovascular system is necessary to make improvements in medical fields. With
a better model of the system, we have a better understanding of how the individual parts interact
to make up the complete system. This model could potentially then be utilized in medicine to
help understand, cure, and prevent cardiovascular diseases. In this paper, we explore the way
blood circulates through veins, arteries, and capillaries, and how its behavior changes given
different parameters. We examine and discuss the change in resistance, volume, pressure, and
flow of blood as it travels throughout the system.

METHODS

To conduct our research, we collected data from ten volunteers aged 20-23 years (with the
average age 21.2). To collect heart data, we used a blood pressure gauge (placed on their left
arm) and a noninvasive heart rate monitor (on the finger of the same arm). Data was taken from
each volunteer from an initial sitting position, then the volunteers were instructed to stand. This
allows us to study the cardiovascular system in a stressed, and unstressed condition. To negate
the effects of a gravitational pull on the system, each volunteer’s left arm was strapped to their
chest such that it rested at heart level. Data was collected for several seconds, under each stressed
and unstressed conditions.

Initially, the pressures, flows, and volumes at key points throughout the cycle were modeled with
respect to time for individual students in the study. Following this, different parameters were
modified one at a time to examine the effect they have on the overall system. The resistance,
compliance, elastance, and timing of the system were changed and the resulting pressures, flows,
and volumes were modeled again.



To quantitatively measure the sensitivity of the different parameters on the model, a
computational sensitivity analysis was performed (see Results 2C). Sensitivity equations were
derived analytically for several parameters as well. The parameters which were found to not be
correlated were varied together to observe the effect on the model.

RESULTS



Figure 1. Data for Student 1.



Figure 2. Data for Student 11.

The preceding graphs depict the pressure, volume, and flow of arteries and veins, as well as the
flow between the two. The data points portrayed in these graphs are from the original lab tests
we previously conducted. As you can see, there are natural differences amongst the students due
to differences in genetics, activity level, diet, and other possible lifestyle choices. However, it is
clear that, generally, the plots are similar. You can notice an oscillation in each parameter as time
continues, varying in degree proportionally to the heart’s beat.



Parameter Analysis
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Sensitivity Analysis

Analytical
We used a rudimentary set of ordinary differential equations to model the system. We derived the
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Figure 3. Sensitivity analysis for Student 1.



Figure 4. Sensitivity analysis for Student 11.



Covariance Matrix: Student 1 Covariance Matrix: Student 11

0 -0.6 0 0 -0.6 0 -0.7 0.9 -0.3 0.03 0

0 0 -0.4 0.1 0.5 0 0 -0.5 0.1 0.5 -0.3

0 0 0 -0.1 -0.1 0 0 0 -0.3 0.3 -0.1

0 0 0 0 -0.8 0 0 0 0 -0.1 0.02

0 0 0 0 0 0 0 0 0 0 -0.4

0 0 0 0 0 0

Figure 5. Covariance matrices of Student 1 and Student 11.

Student 1 Student 11

Figure 6. Estimating the parameter subset for Student 1 and Student 11.



Student 1 Student 11

Figure 7. Comparing scaled and unscaled optimization costs and gradients for Student 1 and
Student 11.

Student 1



Student 11

Figure 8. Table showing the optimized parameter given various nominal parameters.

X = 1 X = 0.1 X = 0.9

X = 1.1 X = 0.1 X = 11

Figure 9. Graphs portray the effects of changing nominal parameters on the dataset.



DISCUSSION

In summary, we used techniques of solving ordinary differential equations, paired with our basic
knowledge of human cardiovascular physiology to translate the workings of the heart into a
mathematical model. We were successful in finding a more specific understanding of the
functions of each subsection of arteries and veins. This was done by varying the compliances,
volumes, flows, pressures, and resistances of each subsection and comparing the materialized
differences.

Modeling the pressures, volumes, and flows as we changed the parameters allowed us to draw
conclusions about how the cardiovascular system works. Our data confirms the relationships
given below:

→𝐶 =  ∆𝑉
∆𝑃 𝑉 = 𝐶𝑃

𝑄 =  
𝑃

1
 − 𝑃

2

𝑅

Examples of these relationships in our model were observed when we halved the parameters
individually. When the resistances and were halved, both the pressures and𝑅

𝑎𝑢𝑝
𝑅

𝑎𝑙𝑝
 𝑃

𝑎𝑢
 𝑃

𝑎𝑙
 

lowered by around . We believe our basic knowledge of the cardiovascular system can10 𝑚𝑚𝐻𝑔
explain this observed change. As the resistance that the blood must move through is lowered, it
takes less pressure for the blood to move. A similar effect is seen in the example of a simple
circuit in series. If there is a resistor in the circuit, it takes a higher voltage to maintain the same
current when compared to a circuit without a resistor ( ).𝑉 = 𝐼𝑅

Halving the resistances also changed the volume throughout different parts of the body. Halving
caused both the diastolic and systolic pressures to decrease, the systolic by and𝑅

𝑎𝑢𝑝
20 𝑚𝑚𝐻𝑔

the diastolic by . As decreases, the blood is more susceptible to the force of40 𝑚𝑚𝐻𝑔 𝑅
𝑎𝑢𝑝

gravity, which causes it to pool more during the diastolic phase. Since there is more blood
pooling in the lower body, the volume of blood during the systolic phase is lower as well.
Halving caused the volume of the blood in the veins to increase, as well as the volume in the𝑅

𝑎𝑙𝑝

upper arteries due to this pooling effect from the lower resistance.

Halving the compliance caused the oscillation of the pressure in the arteries to increase, due𝐶
𝑎𝑢

to more blood being able to quickly flow into and out of the upper body arteries out of the heart.
Halving caused a similar effect during the diastolic phase of the arterial pressures for the𝐶

𝑎𝑙

same reason. Halving the venous compliances resulted in similar changes in pressure but lower
in magnitude, likely due to the increased distance from the heart compared to the arteries.
Lowering caused and to slightly increase, again due to the increased difficulty for𝐶
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blood to enter the arteries. It also increased the oscillations of , which is possibly reflecting𝑃
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the changes from the arterial pressures. Lowering caused the diastolic component of the𝐶
𝑣𝑙

arterial pressures to increase. Since blood can more easily move through the veins, the blood will
not pool as much, lowering the pressure.

When decreases, The upper venous volumes ( increase during both the systolic and𝐶
𝑎𝑢

𝑉
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)

diastolic phases. The upper arterial volumes ( ) decrease by around double the magnitude.𝑉
𝑎𝑢

This implies that more blood is in the veins compared to normal compliance levels. Since the
upper arterial compliance is lower, it is harder for the blood to enter the arteries so more blood
will pool in the veins. When decreases, there is not a noticeable change in the volumes except𝐶

𝑎𝑙

in . It appears that the farther away the changes are from the heart, the lower the effect on the𝑉
𝑎𝑙

system. Halving and results in similar respective changes as when and were𝐶
𝑣𝑢
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halved, but the magnitude of the changes was lower.

Elastance is the inverse of compliance, so altering the or will result in the inverse result𝐸𝑀 𝐸𝑚
of changing the compliances.


